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Asymmetric synthesis of amino acids using sulfinimines
(thiooxime S-oxides)

Franklin A. Davis,* Ping Zhou and Bang-Chi Chen
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The occurrence of a- and b-amino acids in biological systems
and their exceptional utility as chiral building blocks
underlies the importance of new and improved methods for
their synthesis in enantiomerically pure form. The intent of
this review is to highlight the applications of a new class of
chiral imine building block, sulfinimines (thiooxime
S-oxides), for the enantioselective synthesis of amino acids
and their derivertives.

1 Introduction

The N-sulfur bonding imines 1 are versatile intermediates in
organic synthesis, particularly for the preparation of amine
derivatives (Scheme 1).1–3 Among them, sulfinimines (thioox-
ime S-oxide, N-alkylidenesulfinamides, 1b) display unique
reactivity and stereoselectivity due to the existence of the chiral
electron withdrawing sulfinyl group. Like sulfoxides, sulfini-
mines undergo thermo-elimination to give sulfenic acids.4–6 As
expected, sulfinimines are strong Michael acceptors and
undergo addition reactions with alcohols,7 thiols,8 amines,9
hydrazines9 and hydrides.10–12 Sulfinimines also react with
carbon nucleophiles.12,13 More importantly, in many of these

reactions, the chiral centre of the sulfur atom makes it possible
to control these reactions in a highly diastereoselective manner.
The purpose of this article is to review the asymmetric synthesis
of amino acids and their derivatives from enantiomerically pure
sulfinimines with particular attention to applications in the
synthesis of biologically active molecules.

2 Preparation of enantiomerically pure sulfinimines

Several methods have been developed for the preparation of
enantiomerically pure sulfinimines and can be divided into three
categories: asymmetric oxidation of sulfenimines, asymmetric
iminolysis of sulfinates (e.g. the Andersen’s reagent), and
asymmetric iminolysis of sulfinamides.
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2.1 Asymmetric oxidation of sulfenimines
The chemoselective oxidation of sulfenimines 1a to racemic
sulfinimines 1b without over-oxidation to sulfonimines 1c was
first reported by us over two decades ago.7 The chemo- and
stereo-selective oxidation of sulfenimines to enantiomerically
enriched sulfinimines, however, was realized much more
recently during our investigations of N-sulfonyloxaziridines
(Scheme 2).14,15 In these studies it was found that
(2)-N-(phenylsulfonyl)(3,3-dichlorocamphoryl)oxaziridine 3
oxidizes sulfenimines 2 to give sulfinimines (Rs)-4 in 87–90 ee
and 89–96% yield. Simple crystallization upgrades 4 to
enantiomeric purity.15,16 The antipodal sulfinimines (Ss)-4 can
be readily prepared using enantiomeric oxaziridine (+)-3.

Diastereoselective oxidation of sulfenimines has also been
reported for the preparation of non-racemic sulfinimines
(Scheme 3).13 Oxidation of sulfenimines 5 with m-CPBA or
MMPP afforded sulfinimines 6 in 83–99% yield. The dias-
tereoselectivity, however, was highly dependent on the R group
in the chiral auxiliary. For example, when R = H in 5 the
sulfinimine (Rs)-6 was obtained in diastereomerically pure
form.

2.2 Asymmetric iminolysis of sulfinates
Another method for the preparation of sulfinimines is the
iminolysis of sulfinates (Scheme 4). Enantiomerically pure
sulfinimines 10 have been prepared from the Andersen’s
reagent 7 and imino-metallo reagents 9 in moderate to low
yields.10,12,17 This reaction is highly stereoselective, taking
place at the chiral sulfur atom in an SN2 fashion. The imino-
metallo reagents 9 are usually prepared in situ via the reaction
of aromatic nitriles 8 with lithium or Grignard reagents. This
means that R and Ar in 10 cannot be hydrogen and alkyl,
respectively.

Recently we devised an efficient ‘one pot’ procedure for the
asymmetric synthesis of aromatic and aliphatic aldehyde
derived sulfinimines 14 ( > 95% ee) making these versatile
building blocks available for the first time.18,19 This procedure
entails the reaction of N,N-bis(trimethylsilyl)-p-toluenesulfi-

namide 11, prepared in situ by treatment of the Andersen’s
reagent 7 with lithium bis(trimethylsilyl)amide (LiHMDS),
with aromatic or aliphatic aldehydes (Scheme 5). This method
is highly effective for the preparation of arylidene and
alkylidene sulfinamides 14 (R = aryl, alkyl) which are usually
obtained in 57–90% yield. The mechanism of this trans-
formation involves the reaction of silyl sulfinamide anion 13
with the aldehyde in a Peterson type olefination reaction. Anion
13 is thought to be generated by reaction of 11 with the by-
product lithium menthoxide (12).19

Another enantiomerically pure sulfinate available for the
preparation of sulfinimines is menthyl 2-methoxy-1-naph-
thalenesulfinate 15 (Scheme 6).20 In a manner similar to that
outlined in Scheme 5, enantiomerically pure sulfinimines such
as 16 were also obtained.21,22

S-Alkyl sulfinimines can also be prepared using this method
(Scheme 7). Thus reaction of sulfinate 17 with LiHMDS,
followed by addition of the aldehyde in the presence of CsF
afforded S-tert-butyl sulfinimines 18 in enantiomerically pure
form.23
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Scheme 7
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2.3 Asymmetric iminolysis of sulfinamides
Analogous to the iminolysis of sulfinates, Wills and co-workers
reported that the reaction of sulfinamide 19 with the lithiated
imines 9 gave sulfinimines 20 as a single isomer (Scheme
8).24,25 As noted in the other examples, an SN2 inversion of the
chiral centre at sulfur atom is observed and R and Ar in 20
cannot be H or alkyl, respectively.

3 Asymmetric synthesis of a-amino acids from
sulfinimines

As an extension of the Strecker synthesis, first reported in 1850,
addition of cyanide to sulfinimines is expected to give a-amino
nitriles which on hydrolysis give a-amino acids. Our initial
attempts to add common cyanide sources such as KCN,
TMSCN, etc. to sulfinimines were unsuccessful.26 However,
reaction of sulfinimine (Ss)-14 with diethylaluminium cyanide
afforded a mixture of diastereoisomers 21 in good yield, but
modest diastereoselectivity; e.g. 36–42% (Scheme 9).26 Forma-
tion of the major product (Ss,S)-21 is consistent with complexa-
tion of Et2AlCN with the sulfinyl oxygen activating the imine
for intramolecular cyanide addition via chair-like transition
state 22. Significantly, it was observed that addition of ethyl-
(alkoxy)aluminium cyanide [Et(RAO)AlCN], prepared by treat-
ment of Et2AlCN with isopropyl alcohol (RAOH), to the
sulfinimine results in a dramatic improvement in the diastereo-
selectivity (de), e.g. from 36–42% to 82–94%.27 The enhanced
des are attributed to the reduced Lewis acidity of Et(RAO)AlCN
vs. Et2AlCN which makes it more selective. Simple crystalliza-
tion of the amino nitriles affords a diastereomerically pure
product 21 ( > 96% de) in good yield. Acid catalysed hydrolysis
of the diastereomerically pure 21 not only removes the sulfinyl
auxiliary, but hydrolyses the nitrile group, affording the
enantiomerically pure ( > 95% ee) a-amino acids 23. Impor-
tantly, racemization of the sensitive arylglycines was not
detected in this practical asymmetric Strecker synthesis.

A new method for the synthesis of a-amino acids from
sulfinimines was reported by Hua and co-workers (Scheme
10).28 Reaction of sulfinimine 24 with 9-borabicyclo[3.3.1]no-
nane gave 25 exclusively in 95% yield.28 Hydrolysis of the
ortho-ester on silica gel followed by removal of the N-sulfinyl
group resulted in formation of alanine ethyl ester 27 in excellent
yield. Similarly, reaction of 24 with allylmagnesium bromide

afforded 28 in 95% yield as a single isomer. The high
stereoselectivity observed with the allyl Grignard reagent was
attributed to a chair-like six-membered transition state.12,13,28

Compound 28 has been converted to (S)-2-amino- 2-methylbut-
4-enoic acid 29 in 91% yield. The sulfinimine 24 was prepared
in 68% yield by treatment of the Andersen reagent (Rs)-7 with
the imino-metallo reagent prepared from triethoxyacetonitrile
and methyllithium.

4 Asymmetric synthesis of b-amino acids from
sulfinimines

b-Amino acids are important constituents of natural products
and precursors of the b-lactam class of antibiotics. By taking
advantage of the high diastereoselectivity obtained in the
addition of allyl Grignard reagent to sulfinimines,12,13,28 Hua
et al. developed a method for the synthesis of b-amino acids
(Scheme 11).12 Diastereoselective addition of allylmagnesium
bromide to sulfinimines (Ss)-30 gave sulfinamides 31 in
82–98% de and 92–96% yield.12 Following separation of the
diastereoisomers, sulfinamides 31 were converted to b-amino
acids 32 in 50–52% yield via a sequence of reactions.

A simpler route to b-amino acids involves the dias-
tereoselective addition of enolates to enantiopure sulfinimines
(Scheme 12).16,29–31 For example, treatment of (Ss)-sulfinimine

Scheme 8

Scheme 9

Scheme 10

Scheme 11
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30a with the lithium enolate of methyl acetate afforded b-amino
ester 33 in > 97 de and 84% yield.16 Removal of the N-sulfinyl
group with TFA afforded b-phenylalanine 34 in 85% yield.16

Fujisawa and co-workers reported the addition of the enolate
of tert-butyl acetate to sulfinimine 35.32 Interestingly, the
lithium enolate gave (Ss,S)-37 while the titanium enolate
afforded (Ss,R)-37. A non-chelated transition state was used to
explain the formation of (Ss,S)-37 while a six-membered chair-
like transition state containing a four-membered metallocycle
and/or a seven membered counterpart was attributed to the
formation of the (Ss,R)-37. Treatment of (Ss,S)-37 with TFA
gave b-amino acid 38 in 70% yield,32 Scheme 13.

Mikolajczyk et al. reported that the addition of a-phospho-
nate carbanions to sulfinimines gives rise to b-amino phos-
phonic acids (Scheme 14).33 For example, reaction of sulfini-
mine 39 with the lithium a-phosphonate carbanion afforded 40
in 82% de which can be isolated in 52% yield, diastereomeric-
ally pure, by flash column chromatography. Treatment of 40
with TFA–MeOH gave dimethyl b-aminophosphonate 41 in
66% yield. On the other hand, b-amino phosphonic acid 42 was
obtained in 78% yield by treating 40 with HCl–AcOH. A seven-
membered chelated transition state was proposed to explain the
stereochemistry of the product.

5 Asymmetric synthesis of aziridine-2-carboxylate esters
from sulfinimines

Aziridine-2-carboxylate esters are a special class of amino
acids. Enantiomerically pure aziridine-2-carboxylic acids are
versatile intermediates for the asymmetric synthesis of many
biologically active materials because they undergo highly regio-
and stereo-controlled ring opening reactions with nucleophiles
to give b-substituted a-amino acids.34 In this regard, we
developed a highly diastereoselective Darzens’ type condensa-
tion involving addition of the lithium enolate of a-bromoacetate

to sulfinimines (Ss)-14 for the preparation of cis-aziridine-
2-carboxylates (Scheme 15).35 The corresponding
N-sulfinylaziridine-2-carboxylic esters (Ss,S,S)-44 were ob-
tained in 94–98 de and 60–74% yield. A chair-like transition
state 45 was suggested as being responsible for the high
selectivity and stereochemistry. a-Substituted aziridine-2-car-
boxylates can be prepared in a similar manner.36

6 Applications in the synthesis of biologically important
molecules

Enantiomerically pure sulfinimines have found a new role in the
asymmetric synthesis of biologically important nitrogen con-
taining molecules. This section highlights some of these
applications. For example, sulfinimine 39 has been used in the
synthesis of the Taxol C-13 side chain 5016 and its fluoro
analogue 51 as outlined in Scheme 16.30 Novel aspects of these
syntheses are the highly diastereoselective syn hydroxylation of

Scheme 12

Scheme 13

Scheme 14

Scheme 15
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the enolate of 46 with (+)-(camphorylsulfonyl)oxaziridine 47
and the fluorination of 46 with the electrophilic fluorinating
reagent N-fluoro-o-benzenedisulfonimide 48.

(S)-Ethyl b-amino-3-pyridinepropanoate 53 is a key com-
ponent of 54, a peptidomimetic for the Arg-Gly-Asp-Phe
sequence of fibrinogen, and may be useful in the treatment of
heart disease (Scheme 17). This compound is conveniently
prepared from sulfinimine 51 in > 97% ee and 68% overall
yield.21

(R)-(2)-Dysidazirine 57 is a cytotoxic antitumour antibiotic,
isolated from a marine sponge,37 belonging to the smallest class
of nitrogen-unsaturated heterocycles 2H-azirines (Scheme 18).
Its first enantioselective synthesis was recently reported by us
by treating enantiomerically pure N-sulfinylaziridine 56, pre-
pared from sulfinimine 55, with lithium diisopropylamide
(LDA).38 d-erythro-Sphingosine 58, the major constituent of
the lipid backbone of the sphingolipids which play important
roles in cell recognition events, was synthesized from the same
aziridine.39 This was accomplished using a new trifluoroacetic
anhydride (TFAA) induced Pummerer-type rearrangement of

56 discovered in our laboratory.39 The threo isomer of 58 is
available by treatment of 56 with aqueous trifluoroacetic acid.

(+)-Thiamphenicol 62a and its fluorinated analogue,
(2)-florfenicol 62b are broad spectrum synthetic antibacterial
agents used in the animal health industry (Scheme 19). threo-
(1R,2R)-(2)-1-[(4-Methylthio)phenyl]propane-1,3-diol 61 is a
common precursor to both these compounds, the manufacture
of which involves a multi-step sequence ending with a classical
resolution of racemic 61. This compound is conveniently
prepared from the enantiomerically pure sulfinimine 59 via
aziridine 60.40 Conversion of 61 to thiamphenicol is straightfor-
ward involving treatment with dichloroacetyl chloride and
oxidation with m-chloroperbenzoic acid (m-CPBA).
a-Alkyl-a-amino acids are important in the study of enzyme

mechanism and in altering the conformational properties of
peptides. Once incorporated into peptides these amino acids
result in increased rigidity enhancing stability and altering
secondary structures. These amino acids can be prepared from
sulfinimine derived N-sulfinylaziridines such as 63 because
they undergo highly regio- and stereo-selective hydrolysis to
give, for example a-methyl-b-phenylserine 64 (Scheme 20).36

7 Conclusions

The work outlined in this brief review illustrates the applica-
tions of sulfinimines (thiooxime S-oxides) 1b as chiral imine
building blocks for the asymmetric synthesis of a- and b-amino
acids, aziridine-2-carboxylate esters and other biologically
relevant molecules. The usual limitations of imines in these
reactions, low reactivity, enolization and poor stereocontrol, are
avoided with sulfinimines because the chiral sulfinyl group
activates the C–N bond for addition and is a powerful
stereodirecting group. Furthermore, the product sulfinamides
[ArS(O)NH-CHRRA] represent readily separable diastereo-
isomers that on hydrolysis afford the primary amine derivative
without racemization. An added advantage of the sulfinyl group
is that it can be used for further elaboration of the product; e.g.
Pummerer rearrangements and oxidation to sulfonamides, a
useful amine activating and protecting group.
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